【专家视角】韦朝海教授:水溶液性质与水污染(2)
【作者】网站采编
【关键词】
【摘要】:03 处理工艺原理 1. 原理与功能有效性结合 人们从物理、化学、生物、物化与生化等学科理解水污染控制原理。其中,物理法以沉降、过滤、气浮、气提、03
处理工艺原理
1. 原理与功能有效性结合
人们从物理、化学、生物、物化与生化等学科理解水污染控制原理。其中,物理法以沉降、过滤、气浮、气提、膜分离、磁分离等为代表;化学法以酸碱中和、沉淀、络合、水解、氧化、还原、合成、分解、催化氧化等为代表;生物法以降解、合成、代谢、厌氧、好氧、水解、脱氮、除碳、脱硫、吸磷、释磷、脱氯等为常用;物化法以混凝与萃取、过滤与分离、蒸发与结晶、电化学氧化、光催化氧化、零价金属还原、电催化还原、亚/超临界氧化还原等为特征;而生化法则包括生物吸附、生物絮凝、生物催化、生物电解/产电、膜生物反应器等的原理。这样的分类并不一定全面与合理。
所谓功能有效性结合,是指由污染物各种形态/化合态构成的污废水所表现出来的物理化学性质,与人类所发现和可以控制的原理之间,建立起对应的作用机制。比如电子—离子—分子—化合物之间的关系,物质—能量—热量—动量之间的转化,水质—工艺—条件—作用力之间的关系,有序—无序—矢量—混沌—常量之间的关系等。除此之外,还要考虑:相变、聚合、合成、催化、裂解、光解、水解、分解、代谢、降解、氧化、燃烧、矿化等;网捕、吸附、沉积、共沉淀、结晶、螯合、水合、酸析、离子交换、氢键、静电反应的合适条件;不同反应类型之间,还存在协同效应与诱导反应;其中网络关系与相关性模型是分析和解决问题的重要思路。
物理处理法是通过物理作用,以分离、回收污废水中不溶解的、呈悬浮状的污染物质(包括油膜和油珠),在处理过程中不改变其化学性质,如常用的过滤法、沉淀法、浮选法与重力分离法等。化学处理法是向污废水中投加化学试剂,利用化学反应来分离、回收水中的污染物质,或将污染物质转化为无害/低毒的物质。该法既可使污染物与水分离,回收某些有用物质,也能改变污染物的性质,如降低废水的酸碱度、去除金属离子、氧化有毒有害物质等,因此,可达到比物理法更高的净化程度。常用的化学方法有化学混凝沉淀法、中和法、络合螯合作用以及氧化还原法等。
物理化学法,是利用萃取、吸附、结晶、蒸发、离子交换、膜分离技术以及气提等物理化学的原理,分离废水中无机的或有机的(难以生物降解的)溶解态或胶态的污染物质,回收有用组分,使废水中有害物质浓度降低。因此,适合于处理杂质浓度很高的工业废水(用作回收利用的方法),或是浓度很低的废水(用作深度处理与水回用技术)。利用物理化学法处理工业废水前,一般要经过预处理,以减少废水中的悬浮物、油类、有害气体等杂质,或调整废水的pH值,以提高回收效率或减少能量/热量损耗。同时,浓缩的残渣要经过后处理以避免二次污染。
人们对生物处理法的理解停留在合成、降解、转化、代谢的作用水平上,污染物—微生物—环境条件是生物原理转化为技术的三个重要要素,非常有必要从多种元素(及其化合物)的离心、向心、水合机制出发,结合微生物的功能新发现,更加系统地研究存在的各种可能性,包括环境作用力顺序。
总而言之,工艺技术是立足于水质学以及水溶液特性基础上的若干方法原理的组装及其应用,是由化学层面过渡到化工以及工程层面的一种表达,是能量、物质消耗制约条件下污染物转化的方法原理效果的体现,也可以理解为是反应动力学应用对经济因素与环境因素依赖的综合考虑。针对典型工业废水普遍表现出有机污染物浓度高、营养元素失衡、有生物毒性抑制、氮素与盐分呈多态化等特征,其处理往往需要从相分离、污染物转化、降低毒性、改变物性、盐/水的纯化等多角度来考虑,必须通过若干化学—物理—生物原理的组合构建集合的工艺,才能达到污染控制与资源化相结合的共同目标。
2. 操作条件与目标控制的对应性
既存和已知的废水生物处理单元技术及其组合,如:A、O、AO、AAO、AOO、OAO、AOHO;高级氧化技术如:Fenton反应,臭氧反应,自由基反应,湿式催化反应,超临界催化反应等;它们的哪些功能可以与污废水中的污染物性质建立强作用,这种规律被称之为性质与功能的对应性。其中,溶液性质与原理功能(单元反应器)的响应关系需要量化描述。组合工艺与单元反应器的科学定义与数学描述需要阐明,如何用单元反应器来定义工艺?多个单元结合的必要性?这些问题,构成了水处理工艺的重要性,即集成化的技术与系统工程学的结合。由此可见,废水性质与工艺原理的相互作用最终表现为工艺路线的选择与多目标的优化。如图3所示,以AOHO工艺为例,分析如何实现高浓度污废水物质循环驱动自净化的机制。在A单元反应器中可以实现4种方法以上,即厌氧(Anaerobic)、吸附(Adsorption)、气浮(Air flotation/coagulation)、溶剂萃取(Accelerated solvents extract)、氧化还原结合应用(Application of REDOX Technology, ART)等;在好氧的O1反应器中实现三阶段控制的生物转化反应,分别为除碳氨化、部分硝化和完全硝化;在低氧的H反应器中实现2种功能耦合的脱氮结合,分别为水解异养反硝化和厌氧氨氧化协同自养反硝化;而在好氧的O2反应器中,实现全部还原性污染物的彻底氧化,即硝化与矿化的归一化作用。自净化的核心原理表现在:1)后物化工艺沉淀物中的吸附剂和药剂回用于前物化工艺,分离出高浓度组分和降低生物系统的进水负荷;2)从A单元中分离的碳源或电子供体(FeS)用于H反应器中的脱氮;3)将纳滤分盐作用的二价或三价离子作为电解质回用于前混凝,硫酸根被应用于消耗厌氧残余碳源,获得硫化物电子供体。这个工艺已经被设计为工程技术,应用于宝武集团(广东韶钢)的焦化废水处理工程的提标改造中。
文章来源:《化学反应工程与工艺》 网址: http://www.hxfygcygy.cn/zonghexinwen/2022/0107/524.html
上一篇:7旬院士创业为传统制造工艺插上数据的翅膀
下一篇:燃煤烟气脱硫工艺选择